Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2670998.v1

ABSTRACT

Introduction: The COVID-19 pandemic has globally impacted health service access, delivery and resources. There are limited data regarding the impact on the prevention of mother to child transmission (PMTCT) service delivery in low-resource settings. Neotree (www.neotree.org) combines data collection, clinical decision support and education to improve care for neonates. Here we evaluate impacts of COVID-19 on care for HIV-exposed neonates. Methods: Data on HIV-exposed neonates admitted to the neonatal unit (NNU) at Sally Mugabe Central Hospital, Zimbabwe, between 01/06/2019 and 31/12/2021 were analysed, with pandemic start defined as 21/03/2020 and periods of industrial action (doctors (September 2019-January 2020) and nurses (June 2020-September 2020)) included, resulting in modelling during six time periods: pre-doctors’ strike (baseline); doctors’ strike; post-doctors’ strike and pre-COVID; COVID and pre-nurses’ strike ; nurses’ strike; post nurses’ strike. Interrupted time series models were used to explore changes in indicators over time. Results: Of 8,333 neonates admitted to the NNU, 904 (11%) were HIV-exposed. Mothers of 706/765 (92%) HIV-exposed neonates reported receipt of antiretroviral therapy (ART) during pregnancy.  Compared to the baseline period when average admissions were 78 per week (95% confidence interval (CI) 70-87), significantly fewer neonates were admitted during all subsequent periods until after the nurses’ strike, with the lowest average number during the nurses’ strike (28, 95% CI 23-34, p<0.001). Across all time periods excluding the nurses strike, average mortality was 20% (95% CI 18-21), but rose to 34% (95% CI 25, 46) during the nurses’ strike.  There was no evidence for heterogeneity (p>0.22) in numbers of admissions or mortality by HIV exposure status. Fewer HIV-exposed neonates received a PCR test during the pandemic (23%) compared to the pre-pandemic periods (40%) (RR 0.59, 95% CI 0.41-0.84, p<0.001). The proportion of HIV-exposed neonates who received antiretroviral prophylaxis during admission was high throughout, averaging between 84% and 95% in each time-period. Conclusion: While antiretroviral prophylaxis for HIV-exposed neonates remained high throughout, concerning data on low admissions and increased mortality, similar in HIV-exposed and unexposed neonates, and reduced HIV testing, suggest some aspects of care may have been compromised due to indirect effects of the pandemic.


Subject(s)
COVID-19
2.
authorea preprints; 2021.
Preprint in English | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.163840666.67180024.v1

ABSTRACT

Background: We sought to evaluate the impact of changes in estimates of COVID-19 vaccine effectiveness on the incidence of laboratory-confirmed infection among frontline workers at high risk for SARS-CoV-2. Methods. We analyzed data from a prospective frontline worker cohort to estimate the incidence of COVID-19 by month as well as the association of COVID-19 vaccination, occupation, demographics, physical distancing and mask use with infection risk. Participants completed baseline and quarterly surveys, and each week self-collected mid-turbinate nasal swabs and reported symptoms. Results. Among 1,018 unvaccinated and 3,531 fully vaccinated workers, the monthly incidence of laboratory-confirmed SARS-CoV-2 infection in January 2021 was 13.9 (95% confidence interval [CI]: 10.4-17.4), declining to 0.5 (95% CI -0.4-1.4) per 1000 person-weeks in June. By September 2021, when the Delta variant predominated, incidence had once again risen to 13.6 (95% CI 7.8-19.4) per 1000 person-weeks. In contrast, there was no reportable incidence among fully vaccinated participants at the end of January 2021, and incidence remained low until September 2021 when it rose modestly to 4.1 (95% CI 1.9-3.8) per 1000. Below average facemask use was associated with a higher risk of infection for unvaccinated participants during exposure to persons who may have COVID-19, and vaccinated participants during hours in the community. Conclusions. COVID-19 vaccination was significantly associated with a lower risk of SARS-CoV-2 infection despite Delta variant predominance. Our data demonstrate the added protective benefit of facemask use among both unvaccinated and vaccinated frontline workers.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.20.21265288

ABSTRACT

Introduction: In a multi-center prospective cohort of essential workers, we assessed knowledge, attitudes, and practices (KAP) by vaccine intention, prior SARS-CoV-2 positivity, and occupation, and their impact on vaccine uptake over time. Methods: Initiated in July 2020, HEROES-RECOVER cohort provided socio-demographics and COVID-19 vaccination data. Using follow-up two surveys approximately three months apart, COVID-19 vaccine KAP, intention, and receipt was collected; the first survey categorized participants as reluctant, reachable, or endorsers. Results: A total of 4,803 participants were included in the analysis. Most (70%) were vaccine endorsers, 16% were reachable, and 14% were reluctant. By May 2021, 77% had received at least one vaccine dose. KAP responses strongly predicted vaccine uptake, particularly positive attitudes about safety (aOR=5.46, 95% CI: 1.4-20.8) and effectiveness (aOR=5.0, 95% CI: 1.3-19.1). Participants prior SARS-CoV-2 infection were 22% less likely to believe the COVID-19 vaccine was effective compared with uninfected participants (aOR 0.78, 95% CI: 0.64-0.96). This was even more pronounced in first responders compared with other occupations, with first responders 42% less likely to believe in COVID-19 vaccine effectiveness (aOR=0.58, 95% CI 0.40-0.84). KAP responses shifted positively, with reluctant and reachable participant scores modestly increasing in positive responses for perceived vaccine effectiveness (7% and 12%, respectively) on the second follow-up survey; 25% of initially reluctant participants received the COVID-19 vaccine. Discussion: Our study demonstrates attitudes associated with COVID-19 vaccine uptake and a positive shift in attitudes over time. First responders, despite potential high exposure to SARS-CoV-2, and participants with a history of SARS-CoV-2 infection were more vaccine reluctant. Conclusions: COVID-19 vaccine KAP responses predicted vaccine uptake and associated attitudes improved over time. Perceptions of the COVID-19 vaccine can shift over time. Targeting messages about vaccines safety and effectiveness in reducing SARS-CoV-2 virus infection and illness severity may increase vaccine uptake for reluctant and reachable participants.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.17.21259078

ABSTRACT

Background The unprecedented public health impact of the COVID-19 pandemic has motivated a rapid search for potential therapeutics, with some key successes. However, the potential impact of different treatments, and consequently research and procurement priorities, have not been clear. Methods and Findings We develop a mathematical model of SARS-CoV-2 transmission, COVID-19 disease and clinical care to explore the potential public-health impact of a range of different potential therapeutics, under a range of different scenarios varying: i) healthcare capacity, ii) epidemic trajectories; and iii) drug efficacy in the absence of supportive care. In each case, the outcome of interest was the number of COVID-19 deaths averted in scenarios with the therapeutic compared to scenarios without. We find the impact of drugs like dexamethasone (which are delivered to the most critically-ill in hospital and whose therapeutic benefit is expected to depend on the availability of supportive care such as oxygen and mechanical ventilation) is likely to be limited in settings where healthcare capacity is lowest or where uncontrolled epidemics result in hospitals being overwhelmed. As such, it may avert 22% of deaths in high-income countries but only 8% in low-income countries (assuming R=1.35). Therapeutics for different patient populations (those not in hospital, early in the course of infection) and types of benefit (reducing disease severity or infectiousness, preventing hospitalisation) could have much greater benefits, particularly in resource-poor settings facing large epidemics. Conclusions There is a global asymmetry in who is likely to benefit from advances in the treatment of COVID-19 to date, which have been focussed on hospitalised-patients and predicated on an assumption of adequate access to supportive care. Therapeutics that can feasibly be delivered to those earlier in the course of infection that reduce the need for healthcare or reduce infectiousness could have significant impact, and research into their efficacy and means of delivery should be a priority.


Subject(s)
COVID-19
5.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3817420

ABSTRACT

Background: The unprecedented public health impact of the COVID-19 pandemic has motivated a rapid search for potential therapeutics, with some key successes. However, the potential impact of current and proposed treatments, and consequently research and procurement priorities, have not been clear. Methods: First, we used a model of SARS-CoV-2 transmission, COVID-19 disease and clinical care pathways to explore the potential impact of dexamethasone - the main treatment currently for hospitalised COVID-19 patients - under scenarios varying: i) healthcare capacity, ii) epidemic trajectories; and iii) the efficacy of dexamethasone in the absence of supportive care. We then fit the model to the observed epidemic trajectory to-date in 165 countries and analysed the potential future impact of dexamethasone in different countries, regions, and country-income strata. Finally, we constructed hypothetical profiles of novel therapeutics based on current trials, and compared the potential impact of each under different circumstances. In each case, the outcome of interest was the number of COVID-19 deaths averted in scenarios with the therapeutic compared to scenarios without. Findings: We find the potential benefit dexamethasone is severely limited in settings where healthcare capacity is lowest or where uncontrolled epidemics result in hospitals being overwhelmed. As such, it may avert 22% of deaths in high-income countries but only 8% in low-income countries (assuming R=1.35). However, therapeutics for different patient populations (in particular, those not in hospital and early in the course of infection) and types of benefit (in particular, reducing disease severity or infectiousness) could have much greater benefits. Such therapeutics would have particular value in resource-poor settings facing large epidemics, even if the efficacy or achievable coverage of such therapeutics is lower in comparison to other types. Interpretation: People in low-income countries will benefit the least from advances in the treatment of COVID-19 to date, which have focussed on hospitalised-patients with adequate access to supportive care. Therapeutics that can feasibly be delivered to those earlier in the course of infection that reduce the need for healthcare or reduce infectiousness could have much greater impact. Such therapeutics may be feasible and research into their efficacy and means of delivery should be a priority. Funding: None to declare. Declaration of Interest: None to declare.


Subject(s)
COVID-19
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.06.20207878

ABSTRACT

Background COVID-19 mitigation strategies have been challenging to implement in resource-limited settings such as Malawi due to the potential for widespread disruption to social and economic well-being. Here we estimate the clinical severity of COVID-19 in Malawi, quantifying the potential impact of intervention strategies and increases in health system capacity. Methods The infection fatality ratios (IFR) in Malawi were estimated by adjusting reported IFR for China accounting for demography, the current prevalence of comorbidities and health system capacity. These estimates were input into an age-structured deterministic model, which simulated the epidemic trajectory with non-pharmaceutical interventions. The impact of a novel therapeutic agent and increases in hospital capacity and oxygen availability were explored, given different assumptions on mortality rates. Findings The estimated age-specific IFR in Malawi are higher than those reported for China, however the younger average age of the population results in a slightly lower population-weighted IFR (0.48%, 95% uncertainty interval [UI] 0.30% - 0.72% compared with 0.60%, 95% CI 0.4% - 1.3% in China). The current interventions implemented, (i.e. social distancing, workplace closures and public transport restrictions) could potentially avert 3,100 deaths (95% UI 1,500 - 4,500) over the course of the epidemic. Enhanced shielding of people aged [≥] 60 years could avert a further 30,500 deaths (95% UI 17,500 - 45,600) and halve ICU admissions at the peak of the outbreak. Coverage of face coverings of 60% under the assumption of 50% efficacy could be sufficient to control the epidemic. A novel therapeutic agent, which reduces mortality by 0.65 and 0.8 for severe and critical cases respectively, in combination with increasing hospital capacity could reduce projected mortality to 2.55 deaths per 1,000 population (95% UI 1.58 - 3.84). Conclusion The risks due to COVID-19 vary across settings and are influenced by age, underlying health and health system capacity.


Subject(s)
COVID-19
7.
preprints.org; 2020.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-202005.0055.v2

ABSTRACT

Objective: To use mathematical models to predict the epidemiological impact of lifting the lockdown in London, UK, and alternative strategies to help inform policy in the UK. Methods: A mathematical model for the transmission of SARS-CoV2 in London. The model was parametrised using data on notified cases, deaths, contacts, and mobility to analyse the epidemic in the UK capital. We investigated the impact of multiple non pharmaceutical interventions (NPIs) and combinations of these measures on future incidence of COVID-19. Results: Immediate action at the early stages of an epidemic in the affected districts would have tackled spread. While an extended lockdown is highly effective, other measures such as shielding older populations, universal testing and facemasks can all potentially contribute to a reduction of infections and deaths. However, based on current evidence it seems unlikely they will be as effective as continued lockdown. In order to achieve elimination and lift lockdown within 5 months, the best strategy seems to be a combination of weekly universal testing, contact tracing and use of facemasks, with concurrent lockdown. This approach could potentially reduce deaths by 48% compared with continued lockdown alone. Conclusions: A combination of NPIs such as universal testing, contact tracing and mask use while under lockdown would be associated with least deaths and infections. This approach would require high uptake and sustained local effort but it is potentially feasible as may lead to elimination in a relatively short time scale.


Subject(s)
COVID-19 , Death
SELECTION OF CITATIONS
SEARCH DETAIL